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Abstract—It is important for cloud service brokers to provide
a multi-cloud storage service to minimize their payment cost
to cloud service providers (CSPs) while providing service level
objective (SLO) guarantee to their customers. Many multi-cloud
storage services have been proposed or payment cost minimiza-
tion or SLO guarantee. However, no previous works fully leverage
the current cloud pricing policies (such as resource reservation
pricing) to reduce the payment cost. Also, few works achieve
both cost minimization and SLO guarantee. In this paper, we
propose a multi-cloud Economical and SLO-guaranteed Storage
Service (ES3), which determines data allocation and resource
reservation schedules with payment cost minimization and SLO
guarantee. ES3 incorporates (1) a coordinated data allocation
and resource reservation method, which allocates each data item
to a datacenter and determines the resource reservation amount
on datacenters by leveraging all the pricing policies; (2) a genetic
algorithm based data allocation adjustment method, which re-
duce data Get/Put rate variance in each datacenter to maximize
the reservation benefit; and (3) a dynamic request redirection
method, which dynamically redirects a data request from a
reservation-overutilized datacenter to a reservation-underutilized
datacenter to further reduce the payment. Our trace-driven
experiments on a supercomputing cluster and on real clouds (i.e.,
Amazon S3, Windows Azure Storage and Google Cloud Storage)
show the superior performance of ES3 in payment cost minimiza-
tion and SLO guarantee in comparison with previous methods.

I. INTRODUCTION

Cloud storage (e.g., Amazon S3 [1], Microsoft Azure [2]
and Google Cloud Storage [3]), as an emerging commer-
cial service, is becoming increasingly popular. This service
is used by many current web applications, such as online
social networks and web portals, to serve geographically dis-
tributed clients worldwide. In order to maximize profits, cloud
customers must provide low data Get/Put latency and high
availability to their clients while minimizing the total payment
cost to the Cloud Service Providers (CSPs). Since different
CSPs provide different storage service prices, customers tend
to use services from different CSPs instead of a single CSP
to minimize their payment cost (cost in short). However,
the technical complexity of this task makes it non-trivial to
customers, which calls for the assistance from a third-party or-
ganization. Under this circumstance, cloud service brokers [4]
have emerged. A broker collects resource usage requirements
from many customers, generates data allocation (including
data storage and Get request allocation) over multiple clouds,
and then makes resource requests to multiple clouds. It pays
the CSPs for the actually consumed resources as a customer

and charges its customers as a CSP. Cloud service brokers
usually offer prices lower than CSPs’ prices to attract more
customers, which in turn helps reduce the brokers’ cost by
leveraging different pricing policies as explained below.
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Fig. 1. An example of multi-cloud storage service.

First, datacenters in different areas of a CSP and datacenters
of different CSPs in the same area offer different prices for
resource usages including data Get/Put, Storage and Transfer.
Second, the Storage/Transfer pricing follows a tiered model,
which supplies a cheaper unit price for a larger size of data
stored/transferred and vice versa. For example, in Amazon S3
US East, the unit price per GB decreases to $0.0275 when the
data size is larger than 500TB. Third, the data transfer prices
are different depending on whether the destination datacenter
belongs to the same CSP or the same location as the source
datacenter. Fourth, besides the pay-as-you-go pricing model,
in which the consumer pays the CSPs based on resources
actually used, CSPs also offer reservation pricing model [5],
in which a consumer reserves its resource usage for a certain
time in advance with much lower price (e.g., 53%-76% lower
in Amazon DynamoDB [5]).

It is important for cloud service brokers to provide a multi-
cloud storage service that leverages all these pricing policies
to minimize their payment cost to CSPs while providing
Service Level Agreement (SLO) guarantee to their customers.
As shown in Figure 1, the cloud storage service determines
the data allocation and resource reservation schedules among
datacenters over clouds given customers’ data information
(i.e., data sizes and request rates) and their SLO requirements.

In spite of many previous research efforts devoted to mini-
mizing the payment cost (or resource usage) or ensuring data
retrieval SLOs in creating a cloud storage service [6], [7], [8],
[9], [10], there are no previous works that fully utilize all the
aforementioned pricing policies (such as resource reservation
pricing and tiered pricing policies) or consider request rate
variance for cost minimization and SLO guarantee. Also, most
works aim to either minimize cost [6], [7] or provide SLO



guarantee [8], [9] but not both. To handle these problems,
in this paper, we propose a multi-cloud Economical and SLO-
guaranteed Storage Service (ES3) for brokers to automatically
generate data allocation and resource reservation schedules for
cost minimization and SLO guarantee. As far as we known,
this is the first work to build a multi-cloud storage service that
fully leverages all aforementioned pricing policies (especially
the resource reservation pricing policy) for cost minimization,
and also simultaneously provides SLO-guaranteed service.

To minimize the payment cost, a broker needs to maxi-
mize reservation benefit (i.e., cost savings from reservation
compared to the pay-as-you-go pricing), which however is a
formidable challenge. A broker reserves a certain amount of
Gets/Puts during a reservation time (denoted by T ). For each
billing period (denoted by tk) in T , the amount of Gets/Puts
under reservation is charged by the reservation price, and the
amount of overhang of the reservations is charged by the
pay-as-you-go price. Reserving the exact usage amount leads
to the maximum reservation benefit while a reserved amount
higher or lower than the exact usage amount leads to lower
reservation benefit. However, the Get/Put rates on a datacenter
may vary among different tks during T , which reduces the
reservation benefit on the datacenter. For example, in Face-
book, data is usually read heavily soon after its creation, and
then is accessed rarely [11]. Also, static data allocation and
resource reservation schedules based on the predicted data
Get/Put rates in tk may not always minimize the cost since the
rates may vary greatly from the expected rates. Such request
rate variance may make the resource consumption on some
datacenters much higher or lower than their reserved amounts,
which reduces the reservation benefit.

Therefore, ES3 needs to handle three problems arisen in
leveraging the reservation pricing policy to minimize cost:
(1) how to make the resource reservation schedule so that
the reservation benefit can be maximized? (2) how to further
reduce the variance of the Get/Put rates in different tks over T
in each datacenter to maximize its reservation benefit? (3) how
to dynamically balance the Get/Put rates among datacenters to
maximize the total reservation benefit?

To handle problem (1), ES3 smartly relies on the data allo-
cation. Through analysis, we find that increasing the minimum
resource usage in a tk during T on a datacenter (denoted
by A1) can increase the reservation benefit on the datacenter.
Thus, when selecting a datacenter to allocate each data item,
ES3 selects the datacenter that increases A1 the most as
an option. Then, based on the determined data allocation
schedule, ES3 determines the resource reservation schedule
that maximizes the reservation benefit of each datacenter.
To handle problem (2), ES3 uses the Genetic Algorithm
(GA) [12] that is routinely used to generate useful solutions
to optimization problems by mimicking the process of natural
selection. It conducts crossover between different data alloca-
tion schedules to find a schedule that generates the minimum
payment cost. To handle problem (3), ES3 uses data request
redirection that forwards a data request from a reservation-
overutilized datacenter to a reservation-underutilized datacen-

ter. Accordingly, we summarize our contribution below:
(1) A coordinated data allocation and reservation method,
which proactively helps to maximize reservation benefit in
data allocation scheduling and then determines the resource
reservation schedule. Moreover, this method leverages all
the aforementioned pricing policies to reduce cost and also
provides SLO guarantee.
(2) A GA-based data allocation adjustment method, which
further adjusts the data allocation to reduce the variance of
data Get/Put rates over time between different billing periods
in each datacenter in order to maximize the reservation benefit.
(3) A dynamic request redirection method, which dynamically
redirects a Get request from a reservation-overutilized data-
center to a reservation-underutilized datacenter with sufficient
resource to serve the Get request to further reduce the cost.
(4) We conduct extensive trace-driven experiments on a
supercomputing cluster (Palmetto [13]) and real clouds (i.e.,
Amazon S3, Windows Azure Storage and Google Cloud
Storage) to show the effectiveness of ES3 in cost minimization
and SLO guarantee in comparison with previous methods.

In addition to achieving both cost minimization and SLO
guarantee, ES3 is novel in other three aspects for reducing
cost: i) it leverages all the pricing policies, ii) it proactively
maximizes reservation benefit in data allocation scheduling,
and iii) it tries to fully utilize reserved resources. Note that in
addition to brokers, ES3 can also be directly used by a cloud
customer for the same objective.

In the following, Section II formulates the data allocation
and reservation problem for cost minimization and SLO guar-
antee. Sections III-B, III-C and III-D present the three methods
in ES3, respectively. Section IV presents experimental results.
Section V presents the related work. Section VI concludes this
work with remarks on our future work.

II. PROBLEM STATEMENT

A. System Model

A customer deploys its application on one or multiple
datacenters, which we call customer datacenters. We use Dc
to denote the customer datacenters of all customers and use
dci∈ Dc to denote the ith customer datacenter. Ds denotes
the set of the storage datacenters of all CSPs and dpj ∈ Ds
denotes the jth storage datacenter. D denotes the set of all
customers’ data items, and dl ∈ D denotes the lth data
item. As in [14], the SLO indicates the maximum allowed
percentages of Gets/Puts beyond their deadlines. We use εg(dl)
and εp(dl) to denote the percentages and use Lg(dl) and
Lp(dl) to denote the Get/Put deadlines in the SLO of the
customer of dl. In order to ensure data availability [15] in
datacenter overloads or failures, like current storage systems
(e.g., Google File System (GFS)) and Windows Azure), ES3

creates a constant number (β) of replicas for each data item.
The first of the β replicas serves the Get requests while the
others ensure the data availability.

CSPs charge three different types of resources: the storage
measured by the data size stored in a specific region, the data



transfer to other datacenters operated by the same or other
CSPs, and the number of Get/Put operations [5]. We use
αdpj to denote the reservation price ratio, which represents
the ratio of the reservation price to the pay-as-you-go price
for Get/Put operations. ES3 needs to predict the size and
Get/Put request rates of each data item (dl) based on the past
T periods to generate the data allocation schedule. For new
data items, the information can be provided by customers if it
is known in advance; otherwise, they can be randomly assigned
to datacenters initially. Previous study [10] found that a group
of data objects with requesters from the same location has a
more stable request rate than each single item. Thus, in order
to have relatively stable request rates for more accurate rate
prediction, ES3 groups data objects (the smallest unit of data)
from the same location to one data item as in [16].

B. Problem Objective and Constraints

We formulate the problem to find the optimal data allocation
and resource reservation schedules for cost minimization and
SLO guarantee using an integer programming.
Payment minimization objective. We aim to minimize the
total cost for a broker (denoted by Csum), including Storage,
Transfer, Get and Put costs during reservation time T , which
are denoted by Cs, Ct, Cg and Cp, respectively. Cs equals the
sum of the storage costs of all storage datacenters in all billing
periods within T . The storage cost of a storage datacenter in a
billing period equals the product of unit storage price and the
size of stored data in the datacenter. Ct is calculated by the
product of the unit price and the size of imported data. Cg and
Cp can be calculated by deducting the reservation benefit from
the pay-as-you-go cost, which is calculated by the product of
total number of Gets/Puts and the pay-as-you-go unit price.
We use Rgdpj to denote the number of reserved Gets in dpj and
calculate the Get reservation benefit in dpj (fgdpj (R

g
dpj

)) by:

fg
dpj

(Rg
dpj

) = (
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Rg
dpj
∗ (1− αdpj )−O

g
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dpj
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where pgdpj is the unit Get price, and Ogdpj (R
g
dpj

) is the over
reserved Get rates including the cost for over reservation and
the over calculated saving and it is calculated by
Og

dpj
(Rg

dpj
) =

∑
tk∈T

Max{0, Rg
dpj
−

∑
dci∈Dc

r
tk
dci,dpj

∗ tk}, (2)

where rtkdci,dpj denotes the Get rate from dci to dpj during tk.
We calculate the Put reservation benefit (fpdpj (R

p
dpj

)) similarly.
The payment cost of the broker ES3 for its customer cn is:

Ccn
sum = Cs ∗ γcn

s + Ct ∗ γcn
c + Cg ∗ γcn

g + Cp ∗ γcn
p , (3)

where γcns , γcnc , γcng and γcnp are the percentages of cn’s
usages in all customers’ usages of different resources.
Constraints. First, ES3 needs to ensure that a request is
served by a datacenter having a replica of its targeting data
(Constraint 1). ES3 also needs to ensure that each Get/Put
satisfies the Get/Put SLO. We use F gdci,dpj (x) and F pdci,dpj (x)
to denote the cumulative distribution function (CDF) of
Get and Put latency from dci to dpj , respectively. Thus,
F gdci,dpj (L

g(dl)) and F pdci,dpj (L
p(dl)) are the percentage of

Gets and Puts from dci to dpj within the latencies Lg(dl) and

Lp(dl), respectively. Accordingly, for each customer datacen-
ter dci, we can find a set of storage datacenters that satisfy
the Get SLO for Gets from dci targeting dl, i.e.,

Sg
dci,dl

= {dpj |F g
dci,dpj

(Lg(dl)) ≥ (1− εg(dl))}.
We define Gdci as the whole set of Get/Put data requested by
dci during T . For each data dl ∈ Gdci , we can find another
set of storage datacenters:
Sp
dl

= {dpj |∀dci∀tk, (udl,tk
dci

> 0)→ (F g
dci,dpj

(Lp(dl) ≥ 1−εp(dl))}

that satisfy Put SLO of dl, where udl,tkdci
denotes the Put rate

targeting dl from dci during tk. The intersection of the two
sets, Spdl ∩S

g
dci,dl

, includes the datacenters that can serve dl’s
requests from dci with Get and Put SLO guarantees. Therefore,
any storage datacenter that serves dl’s Get/Put requests from
dci should belong to Spdl ∩ S

g
dci,dl

(Constraint 2).
ES3 needs to maintain a constant number (β) of replicas

for each data item requested by datacenter dci to ensure data
availability (Constraint 3). Finally, ES3 needs to ensure that
each datacenter’s Get/Put capacity is not exceeded by the total
amount of Gets/Puts from all customers (Constraint 4).
Problem. The problem is to find data allocation schedule and
resource reservation schedule that achieves:

min Csum = Cs + Ct + Cg + Cp (4)
s.t. Constraints 1, 2, 3 and 4.

A simple reduction from the generalized assignment prob-
lem [17] can be used to prove this problem is NP-hard.

III. THE DESIGN OF ES3

A. Overview of ES3

Due to the hardness of the above formulated problem, we
propose a heuristic solution, called coordinated data allocation
and reservation method (Section III-B). It determines the
data allocation first (that proactively increase the reservation
benefit) and then determines the resource reservation schedule
based upon the data allocation schedule. To maximize the
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reservation benefit, as
shown in Figure 2, ES3

can use its GA-based
data allocation adjustment
method (Section III-C) to
improve the data allocation
schedule before determining
the resource reservation schedule.

Using these methods, at the beginning of each reservation
time T , the master server in ES3 determines the two schedules
based on its predicted data size and Get/Put rates of each data
item in the next billing period tk. To facilitate the prediction,
each customer datacenter dci measures and reports this infor-
mation and Get/Put latency distribution to storage datacenters
to the master after each tk. The resource reservation in each
datacenter will not be changed during the entire reservation
time T . Since the Get/Put latency and rates vary over time, the
data allocation schedule under the fixed reservation schedule
needs to update after each tk in order to reduce the cost.
The dynamic request redirection method (Section III-D) is
used whenever a Get request will be sent to a reservation-
overutilized datacenter.



B. Coordinated Data Allocation and Resource Reservation

In Section III-B1, we present how to schedule resource
reservation given a data allocation schedule, and a rule that
needs to follow in data allocation scheduling to increase reser-
vation benefit. In Section III-B2, we present how to schedule
the data allocation by following this rule and leveraging all
the pricing policies for cost minimization and SLO guarantee.

1) Resource Reservation: First, we introduce how to find
the optimal reservation amount on each datacenter that maxi-
mizes the reservation benefit given a data allocation sched-
ule. We take the Get reservation for datacenter dpj as an
example to explain the method. The determination of the
Put reservation is the same as the Get reservation. We use
Bdpj = Max{fgdpj (R

g
dpj

)}Rg
dpj

∈N∪{0} to denote the largest
reservation benefit for dpj given a specific data allocation. We
use Atk =

∑
dci∈Dc

rtkdci,dpj ∗ tk to denote the number of Gets
served by dpj during tk, and define A = {A1, A2, ..., An} as a
list of all Atks of different tk ∈ T sorted in an increasing order.
As shown in Figure 3(a), for datacenter dp1, if the reservation
is the amount of Gets in billing period t1, since the usage in t2
is much higher than the reserved amount, the payment in t2 is
high. If the reservation is the amount of Gets in t2, then since
the real usage in t1 is much lower, the reserved amount is
wasted. It is a challenge to determine the optimal reservation.
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We can prove that when Rgdpj ∈ [Ai, Ai+1] (i = 1, .., n−1),
reservation benefit fgdpj (R

g
dpj

) increases or decreases mono-
tonically within [Ai, Ai+1] (as shown in Appendix A). This
means that the reservation benefit reaches the maximum when
Rgdpj ∈ A. Thus, the optimal reservation is the Ai (i ∈
[1, n− 1]) that generates the largest reservation benefit, i.e.,

Bdpj =Max{fg
dpj

(Ai)}Ai∈A. (5)

Then, based on the determined data allocation, we use Equa-
tion (5) to determine the reserved amount for each datacenter.

Next, we show how the data allocation can proactively help
increase the reservation benefit when selecting a datacenter
to allocate a data item. As shown in Appendix A, we can
also prove that for Rgdpj ∈ [0, A1], f

g
dpj

(Rgdpj ) is positively
proportional to Rgdpj . Also, the maximum reservation benefit
is no less than the reservation benefit of choosing Rgdpj =
Min{Ai}Ai∈A = A1. Therefore, in order to maximize reser-
vation benefit on datacenter dpj , we can enlarge its lower
bound fgdpj (A1), which needs to enlarge A1 in data allocation.
Thus, in data allocation, we should follow the following rule:

Rule 1: Among several datacenter candidates to allocate a
data item, we need to choose the datacenter that leads to the
largest A1 increment after being allocated with the data item.

2) Data Allocation: Before we explain the datacenter se-
lection for a data item, we first introduce a concept of
Storage/Get/Put-intensive data item. A data item dl’s payment
cost consists of Get, Put, Transfer and Storage cost denoted
by Cdls , Cdlg , Cdlt and Cdlp . Transfer conducts one-time data
import to clouds and is unlikely to become the dominant cost.
We consider data item dl as Storage-intensive if Cdls dominates
the total cost (e.g, Cdls � Cdlg +Cdlp ), and the Get/Put-
intensive data items are defined similarly. Many data items
have certain operation patterns and accordingly become Get-,
Put- or Storage-intensive. For example, the instant messages
in Facebook are Put-intensive [18]. In the web applications
such as Facebook, the old data items with rare Gets/Puts [11]
become Storage-intensive. In addition, recall that only one
copy of the β replicas of each data item is responsible for the
Get requests, the remaining β− 1 replicas then become either
Put or Storage intensive. In order to reduce cost, a Get, Put or
Storage-intensive replica is allocated to a datacenter with the
cheapest unit price for Get, Put or Storage, respectively.

Algorithm 1: Data allocation scheduling algorithm.
1 for each dci in Dc do
2 for each dl requested by dci do
3 while the number of replicas of dl is less than β do
4 if first replica of dl then
5 It is assigned to serve requests from

dci towards dl; All other replicas do not serve Gets;
6 if dl is Storage intensive then
7 L = {(dpj with the largest Sdpj among all

datacenters having the smallest Storage unit price)
∧(dpj ∈ Sp

dl
∩ Sg

dci,dl
)∧(dpj with enough Ge/Put

capacity) };

8 else if dl is Get/Put intensive then
9 L = {(dpj with the smallest Get/Put unit price ∨

with the lowest unit reservation price ∨ with the
largest increment of A1)
∧(dpj ∈ Sp

dl
∩ Sg

dci,dl
)∧(dpj with enough Get/Put

capacity)};

10 else if dl is non-intensive then
11 L is the union of all the above L sets;

12 dl is allocated to dpj in L with the smallest Csum;

Next, we introduce how to identify the datacenter to store
a given data item. For each data item, the first replica handles
all Get requests (Constraint 1), and all other replicas do not
handle the Get requests. Section II-B indicates that datacenters
in (Spdl∩S

g
dci,dl

) satisfy the SLO of data item dl (Constraint 2)
and Constraint 4 must be satisfied to ensure that the allocated
datacenters have enough Get/Put capacity for dl. Among these
qualified datacenters, we need to choose β (Constraint 3)
datacenters that can reduce the cost as much as possible
(Objective (4)). In the datacenter selection, we consider all
current pricing policies as presented in Section I. First, storing
the data in the datacenter that has the cheapest unit price for
its dominant cost (e.g., Get, Put or Storage) can reduce the
cost greatly. Second, if the data is Storage-intensive, based on
the tiered pricing policy, storing the data in the datacenter
that results in the largest aggregate storage size Sdpj can
reduce the cost greatly. Third, if the data is Get/Put-intensive,



in order to minimize the reservation cost, we should choose
the datacenters with the lowest unit reservation price and the
datacenters selected following Rule 1 in Section III-B1. Based
on these three considerations, the datacenter candidates to store
the data are selected. Among these selected datacenters, the
one with the smallest Csum is finally identified to store the
data. Algorithm 1 shows the pseudocode for the data allocation
algorithm. After each billing period, using Algorithm 1, ES3

finds a new data allocation schedule and calculates its Csum.
It compares the new Csum with previous Csum, and chooses
the data allocation schedule with smaller Csum.

After determining the data allocation schedule, ES3 needs
to transfer a data replica from a source datacenter with the
replica to the assigned datacenter. To reduce cost (Objec-
tive (4)), ES3 takes advantage of the tiered pricing model
of Transfer to reduce the Transfer cost. It assigns priorities to
the datacenters with the replica for selection in order to have
a lower unit price of Transfer. Specifically, for the datacenters
belonging to the same CSP of assigned datacenter dpj , those
in the same location as dpj have the highest priority, and
those in different locations from dpj have a lower priority. The
datacenters that do not belong to dpj’s CSP have the lowest
priority, and are ordered by their current unit transfer prices
(under the aggregate transfer data size) in an ascending order
to assign priorities. Finally, the datacenter with the highest
priority is chosen as the source datacenter to transfer data.

C. GA-based Data Allocation Adjustment

If the allocated Get/Put rates vary over time largely (i.e.,
the rates exceed and drop below the reserved rates frequently),
then the reservation saving is small according to Equation (1).
For example, Figure 3(a) shows a data allocation schedule.
Then, both Rgdpj = 100 and Rgdpj = 200 reduce reservation
benefit at a billing period. We propose the GA-based data
allocation adjustment method to make the reserved amount ap-
proximately equal to the actual usage as shown in Figure 3(b).

<d1,{dp1,…,dpβ}> <d2,{dp1’,…,dpβ’}> … <dk,{dp1’’,…,dpβ’’}> 
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Fig. 4. GA-based data allocation adjustment.

As shown in Figure 4, this method regards each data
allocation schedule, represented by <dl, {dp1, ..., dpβ}>
(dl ∈ D), as a genome string, where {dp1, ..., dpβ} (denoted
by Gdl ) is the set of datacenters that store dl. Using
Algorithm 1, it generates the data allocation schedule with
the lowest total cost (named as global optimal schedule). It
also generates the data allocation schedules with the lowest
Storage cost, lowest Get cost and lowest Put cost (named
as local optimal schedules) by assuming all data items as
Storage-, Get- and Put-intensive, respectively.

To generate the children of the next generation, this method
conducts crossover between the global optimal schedule with
each local optimal schedule with crossover probability θ
(Figure 4). Each genome in a child’s genome string is from
either the global optimal schedule (with probability θ) or the
local optimal schedule (with probability 1-θ). To ensure the
schedule validity, for each crossover, the genomes that do not
meet all constraints in Section II-B are discarded. In order not
to be trapped into a sub-optimal result, the genome mutation
occurs in each genome string after the crossover with a certain
probability. In the mutation of a genome, for each data item,
dp1 in Gdl (which serves Gets) and a randomly selected dpk
in Gdl are replaced with qualified datacenters.

After a crossover and mutation, the global optimal schedule
and the local optimal schedules are updated accordingly.
Among the child schedules and the global optimal schedule,
the one with the smallest Csum (based on Equation (4)) is
selected as the new global optimal schedule. Similarly, we
evaluate each schedule’s Storage/Get/Put cost exclusively to
generate the new Storage/Get/Put local optimal schedules,
respectively. In order to speed up the convergence to the
optimal solution, the number of children in the next gener-
ation (Ng) is inversely proportional to the improvement of
the global optimal schedule in the next generation. That is,
Ng = Min{N, N

Csum/C′
sum
}, where N is a constant integer

as the base population, Csum and C ′
sum are the total cost

of current and new global optimal schedules, respectively.
Creating generation is terminated when the maximum number
of consecutive generations without cost improvement or the
largest number of generations is reached. Though this method
is time consuming, it is only executed once at the beginning
of reservation time period T (e.g., one year in Amazon
DynamoDB [5]).

D. Dynamic Request Redirection

ES3 master predicts the Get load of each storage datacenter
dpj at the initial time of tk (Atk ), which is used to calculate
the data allocation schedule. If the actual number of Gets is
larger or smaller than Atk , then the schedule may not reach
the goal of SLO guarantee and minimum cost. There may be
a request burst due to a big event, which leads to an expensive
resource usage under current request allocation among storage
datacenters. Sudden request silence may lead to a waste of
reserved usage. The Get operation only needs to be resolved
by one of β replicas. Therefore, we can redirect the burst
Gets on a datacenter that uses up its reservation to a replica
in a datacenter whose reservation is underutilized in order to
save cost. This redirection can also be conducted whenever a
datacenter overload or failure is detected.

We consider a datacenter reservation-overutilized if its Get
load is higher than its reserved number of Gets and use
threshold Tmax = Atk/tk to check whether a datacenter is
reservation-overutilized. We consider a datacenter reservation-
underutilized if its reserved Gets are not fully used and use
threshold Tmin = Rgdpj/tk to check whether a datacenter is
reservation-underutilized. The master calculates the aggregate
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Fig. 5. Get SLO guaranteed performance.
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Fig. 6. Put SLO guaranteed performance.

number of Gets for each datacenter during tk, denoted by
gdpj . We used t to denote the elapsed time interval during tk.
Datacenters with gdpj/t < Tmin are reservation underutilized,
datacenters with gdpj/t ≥ Tmax are reservation-overutilized,
and datacenters with Tmin < gdpj/t < Tmax are called
reservation-normalutilized datacenters. We aim to release the
load from reservation-overutilized datacenters to reservation-
underutilized datacenters in order to fully utilize the reser-
vation. Specifically, ES3 master sends out the three different
groups to all the customer datacenters. If a customer datacenter
notices that the target datacenter to serve a request is a
reservation-overutilized datacenter, it selects another replica
among β replicas in a reservation-underutilized datacenter with
sufficient resource to serve the request and the lowest unit Get
price. The consideration of the unit Get price is to reduce the
cost if the redirected request uses up the reservation of the
datacenter. If there are no reservation-underutilized datacen-
ters, the reservation-normalutilized datacenter with sufficient
resource to serve the request and the lowest unit Get price is
selected. This way, the dynamic request redirection algorithm
further reduces the cost by fully utilizing the reserved resource.

IV. PERFORMANCE EVALUATION

We conducted trace-driven experiments on Palmetto [13], a
super computing cluster with 771 8-core nodes, and deployed
ES3 on real-world clouds. We first introduce the experimental
settings.

Simulated clouds. We simulated two datacenters in each of
all 25 cloud storage regions in Amazon S3, Microsoft Azure
and Google cloud storage [1], [2], [3]. The distribution of
the inter-datacenter Get/Put latency follows the real latency
distribution as in [10]. The unit prices for Storage, Get, Put
and Transfer and the reservation price ratio in each region
follow the real prices listed online. We simulated ten times
of the number of all customers listed in [1], [2], [3] for
each cloud storage provider. As in [10], in the SLOs for all
customers, the Get deadline is 100ms [10], the percentage of
latency guaranteed Gets and Puts is 90%, and the Put deadline
for a customer’s datacenters in the same continent is 250ms
and is 400ms for an over-continent customer. Also, the size
of each data item of a customer was randomly chosen from
[0.1TB, 1TB, 10TB] [10]. The number of data items of a
customer follows a bounded Pareto distribution with a lower
bound, upper bound and shape as 1, 30000 and 2 [19]. We set
the mutation rate, crossover rate, and the maximum number
of generations in the GA-based data allocation adjustment
method to 0.2, 0.8, and 200 respectively. In simulation, we

set the billing period to 1 month, and we computed the cost
and evaluated the SLO performance in 12 months. We run each
experiment for 10 times and reported the average performance.

Get/put operations. The percentage of the data items
visited (Get/Put) follows a bounded Pareto distribution with
a upper bound, lower bound and shape as 20%, 80% and 2.
The size of each requested data object was set to 100KB [10].
The Put rate follows the publicly available wall post trace
from Facebook [20] and we set the Get rate of each data
item based on the 100:1 Get:Put ratio [21]. We set the
Get and Put capacities of each datacenter to 1E8 and 1E6
Gets/Puts per second, respectively, based on real Facebook
Get/Put capacities [21]. When a datacenter is overloaded, the
Get/Put operation on it was repeated once.

Real clouds. We also conducted a small scale trace-driven
experiment on real-world clouds. We implemented ES3’s
master in Amazon EC2’s US West (Oregon) Region. We
simulated one customer that has customer datacenters in
Amazon EC2’s US West (Oregon) Region and US East
Region. Unless otherwise indicated, the settings are the same
as before. Due to the small scale, the number of data items
was set to 1000, the size of each item was set to 100MB, and
β was set to 2. We set the Put deadline to 200ms. We set the
capacity of a datacenter in each region of all CSPs as 30% of
total expected Get/Put rates. Since it is impractical to conduct
experiments lasting a real contract year, we set the billing
period to 4 hours, and set the reservation period to 2 days.

Comparison methods. We compared ES3 with the follow-
ing systems. i) COPS [9]. It allocates requested data into a dat-
acenter with the shortest latency to each customer datacenter
but does not consider payment cost minimization. ii) Cheapest.
It selects the datacenters with the cheapest cost in the pay-as-
you-go manner to store each data item. It neither provides SLO
guarantee nor attempts to minimize the cost with the consider-
ation of reservations. iii) Random. It randomly selects datacen-
ters to allocate each data item without considering cost mini-
mization or SLO guarantee. iv) SPANStore [10]. It is a storage
system over multiple CSPs’ datacenters to minimize cost and
support SLOs. It neither considers datacenter capacity limita-
tions to guarantee SLOs nor considers reservation, tiered pric-
ing model, or the Transfer price differences to minimize cost.

A. Comparison Performance Evaluation

In this section, we varied each data item’s Get/Put rate from
50% to 100% (named as request ratio) of its actual Get/Put
rate in the Facebook trace [20], with a step increase of 10%.
The Get SLO satisfaction level of a customer is calculated by



16

32

64

128

50 60 70 80 90 100C
o

st
 r

a
ti

o
 t

o
 R

a
n

d
o

m
 (%

)
 

Request ratio (%) 

ES3 ES3-IND SPANStore

COPS Cheapest Random

(a) In simulation

16

32

64

128

50 60 70 80 90 100C
o

st
 r

a
ti

o
 t

o
 R

a
n

d
o

m
 (

%
)

 

Request ratio (%) 

ES3 SPANStore COPS

Cheapest Random

(b) In real clouds
Fig. 7. Payment cost minimization with normal Get/Put workload.
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Fig. 8. Payment cost minimization with light Get/Put workload.

Min{Min{n′tk/ntk}∀tk∈T , (1−ε
g)}/(1−εg), where n′tk and

ntk are the number of Gets within Lg and the total number of
Gets of this customer, respectively. Similarly, we can get the
Put SLO satisfaction level.

Figures 5(a) and 5(b) show the lowest Get SLO satis-
faction level of each system in simulation and real-world
experiment, respectively. We see that the result follows
100% =ES3=COPS>SPANStore>Random>Cheapest. ES3

considers both the Get SLO and capacity constraints, thus
it can supply a Get SLO guaranteed service. COPS always
chooses the provider datacenter with the smallest latency.
SPANStore always chooses the provider datacenter with the
Get SLO consideration. However, since it does not consider
datacenter capacity, a datacenter may become overloaded and
cannot meet the Get SLO deadline. Random randomly selects
datacenter so it generates a lower Get SLO guaranteed per-
formance than SPANStore. Cheapest does not consider SLOs,
so it generates the worst SLO satisfaction level. Figure 6(a)
and 6(b) show the lowest Put SLO satisfaction level of each
system in simulation and real-world experiment, respectively.
It shows the same order and trends of all systems as in
Figure 5(a) due to the same reasons except for COPS. COPS
allocates data without considering the Put latency minimiza-
tion, and the Puts to far-away datacenters may introduce a long
delay. Thus, COPS generates a lower Put SLO satisfaction
level than SPANStore. Figures 5 and 6 indicate that only ES3

can supply a both Get/Put SLO guaranteed service.

Since Random does not consider SLO guarantee or payment
cost minimization, we measure the cost improvement of the
other systems compared to Random. Figures 7(a) and 7(b)
show the ratio of each system’s cost to Random’s cost in
simulation and real-world experiment, respectively. In order
to show the effect of considering the tiered pricing model,
in simulation, we also tested a variant of ES3, denoted by
ES3-IND, in which each customer individually uses ES3 to
allocate its data without aggregating their workload together
through the broker. The figures show that the cost follows
COPS≈Random>SPANStore>Cheapest>ES3-IND>ES3.
Since both COPS and Random do not consider cost,
they produce the largest cost. SPANStore selects the cheapest
datacenter in pay-as-you-go manner with SLO constraints, thus
it generates a smaller cost. However, it produces a larger cost
than Cheapest, which always chooses the cheapest datacenter.
ES3-IND generates a smaller cost than these methods, because
it chooses the datacenter under SLO constraints that minimizes
each customer’s cost by considering all pricing policies. ES3

generates the smallest cost because it further aggregates work-
loads from all customers to get a cheaper Storage and Transfer
unit price based on the tiered pricing model. The figures con-
firm that ES3 generates the smallest payment cost in all sys-
tems and the effectiveness of considering tiered pricing model.

B. Effectiveness of Individual Methods in ES3

We are interested to see whether the data intensiveness
change will affect the performance of different systems. Thus,
in this test, we repeated the experiments in Section IV-A with
the Get/Put rates of data objects reduced by 1/10 times, which
makes a larger percentage of data items Storage-intensive. In
order to measure the effectiveness of GA-based data allocation
on cost minimization, we varied the Get/Put rate of each data
item in a billing period. Specifically, the Get/Put rate was set
to x% of the rate in the previous billing period, where x was
randomly chosen from [50, 200] according to [10]. We use
ES3-NG to denote ES3 without GA-based data allocation
adjustment. In order to show the effect of considering the
reservation on cost minimization, we also tested ES3 without
any reservation or GA-based method, denoted by ES3-NR.

Figures 8(a) and 8(b) show the ratio of each system’s cost
to Random’s cost in simulation and real-world experiment,
respectively. The figures show the same order between all
systems as Figure 7(a) due to the same reasons, which
indicates that the data intensiveness does not affect the per-
formance differences between the systems. Since ES3-NR
also chooses the cheapest datacenters by considering different
pricing policies except reservation, it produces a cheaper cost
than SPANStore. However, by choosing datacenters with SLOs
constraints that may offer a higher price than the cheapest
price, ES3-NR generates a larger cost than Cheapest, which
generates a larger cost than ES3. This result shows the
effectiveness of considering reservation in cost minimization.
ES3-NG produces a higher cost than ES3, which shows
the effectiveness of the GA-based data allocation adjustment
method in cost minimization.

C. Performance under Dynamic Request Rates

This section measures the performance in providing Get
SLO guarantee and cost minimization under dynamic request
rates. We denote ES3 without the Request Redirection method
by ES3-NRR. The Get rate of each data item was randomly
chosen from [(1−x)v, (1+x)v], where v is the Get rate, and x
is called varying ratio bound and was varied from 10% to 50%
in experiments. Figures 9(a) and 9(b) show the average Get
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Fig. 9. SLO guarantee of Gets with varying Get rate.
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Fig. 10. Cost minimization with varying Get rate.

SLO satisfaction level of all customers in simulation and real-
world experiment, respectively. They show the same trends
and orders of all systems as in Figures 5(a) and 5(b) due
to the same reasons. The figure also shows that ES3-NRR
generates a lower Get SLO satisfaction level than ES3 and
COPS but a higher level than the others. This is because
ES3-NRR generates long latency on overloaded datacenters
when some data items have larger request rates than expected,
so it cannot supply an SLO guaranteed service in the case
of varying request rates. However, due to its Get/Put SLO
guarantee and capacity awareness, it generates a higher SLO
satisfaction level than others. The figures indicate the high
effectiveness of ES3’s dynamic request redirection method to
handle the Get rate variance in ensuring Get SLO.

Figures 10(a) and 10(b) show the ratio of each system’s
cost to Random’s cost. The figures show the same order
between all systems as in Figure 7(a) due to the same reasons.
It also shows that ES3-NRR generates a higher cost than
ES3 but a lower cost than others. Without dynamic request
redirection, ES3-NRR cannot fully utilize reserved resources
like ES3 and pays more for the over-utilized resources beyond
the reservation. However, by leveraging all pricing policies,
ES3-NRR generates a lower payment cost than other systems.
The figures indicate the high effectiveness of ES3’s dynamic
request redirection method to reduce the payment cost in
varying request rates and the superior performance of ES3

in handling dynamic request rates for cost minimization.

V. RELATED WORK

Storage services over multiple clouds. RACS [14] and
DepSky [22] are storage systems that transparently spread
the storage load over many cloud storage providers with
replication in order to better tolerate provider outages or
failures. COPS [9] allocates requested data into a datacenter
with the shortest latency. Unlike these systems, ES3 considers
both SLO guarantee and payment cost minimization.
Cloud/datacenter storage payment cost minimization.
In [23], [6], a cluster storage configuration automation method
is proposed to use the minimum resource to support the desired
workload. These works are focused on one cloud rather than
a geographical distributed cloud storage service over multiple
CSPs, so they do not consider the price differences from
different CSPs. Puttaswamy et al. [7] proposed a multi-cloud
file system called FCFS. FCFS considers data size, Get/Put
rates, capacities and service price differences to adaptively
assign data with different sizes to different storage services to
minimize the cost for storage. However, it cannot guarantee

the SLOs without deadline awareness. SPANStore [10] is a
key-value storage system over multiple CSPs’ datacenters to
minimize payment cost and guarantee SLOs. However, it does
not consider the datacenter capacity limitation, which may lead
to SLO violation, and also does not fully leverage all pricing
policies in cost minimization as indicated previously. Also,
SPANStore does not consider Get/Put rate variation during a
billing period, which may cause datacenter overload and vio-
late the SLOs. ES3 is advantageous in that it overcomes these
problems in achieving SLO guarantee and cost minimization.
Pricing models on clouds. There are a number of works
studying resource pricing problem for CSPs and customers.
In [24], [25] and [26], dynamic pricing models including
adaptive leasing or auctions for cloud computing resources are
studied to maximize the benefits of cloud service customers.
Roh et al. [27] formulated the pricing competition of CSPs and
resource request competition of cloud service customers as a
concave game. The solution enables the customers to reduce
their payments while receiving a satisfied service. Different
from all these studies, ES3 focuses on the cost optimization
for a customer deploying geographically distributed cloud
storage over multiple cloud storage providers with SLO con-
straints.
Cloud service SLO guarantee. Spillane et al. [28] used
advanced caching algorithms, data structures and Bloom filters
to reduce data read/write latencies in a cloud storage system.
Wang et al. [8] proposed Cake to guarantee service latency
SLO and achieve high throughput using a two-level scheduling
scheme of data requests within a datacenter. Wilson et al. [29]
proposed D3 with explicit rate control to apportion bandwidth
according to flow deadlines to guarantee the SLOs. Hong et
al. [30] adopted a flow prioritization method by all interme-
diate switches based on a range of scheduling principles to
ensure low latencies. Zats et al. [31] proposed a cross-layer
network stack to reduce the long tail of flow completion times.
Wu et al. [32] adjusted TCP receive window proactively before
packet drops occur to avoid incast congestions to reduce the
incast delay. Unlike these works, ES3 focuses on building a
geographically distributed cloud storage service over multiple
clouds with SLO guarantee and cost minimization.

VI. CONCLUSION

In this paper, we propose a multi-cloud Economical and
SLO-guaranteed cloud Storage Service (ES3) for a cloud bro-
ker over multiple CSPs that provides SLO guarantee and cost
minimization even under the Get rate variation. ES3 is more
advantageous than previous methods in that it fully utilizes



different pricing policies and considers request rate variance
in minimizing the payment cost. ES3 has a data allocation and
reservation method and a GA-based data allocation adjustment
method to guarantee the SLO and minimize the payment cost.
ES3 further has a dynamic request redirection method to
select a replica in a datacenter with sufficient reservation to
serve the request on a reservation-overutilized datacenter in
order to reduce the cost when the request rates vary greatly
from the expected rates. Our trace-driven experiments on
a supercomputing cluster and real different CSPs show the
superior performance of ES3 in providing SLO guarantee and
cost minimization in comparison with previous systems and
the effectiveness of individual methods in ES3. In our future
work, we will study how to dynamically create and delete data
replicas in datacenters to fully utilize the Put reservation. We
will also consider the dependency between data items for data
allocation in order to expedite the data retrieval.
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APPENDIX
RESERVATION BENEFIT MONOTONICITY

Theorem 1. For a datacenter dpj , its reservation benefit
function fdpj (x) increases when x ∈ [0, R′g

dpj
), and decreases

when x ∈ (R′g
dpj
, An], where R′g

dpj
is the optimal reserved

number of Gets that leads to the maximal reservation benefit.

Proof. According to Equation (1), we define the increasing
benefit of increased reservation as fI(x) = fdpj (x)−fdpj (x−
1) = (n∗(1−α)−O′(x))∗pgdpj , where n is number of billing
periods in T . O′(x) = Odpj (x)−Odpj (x− 1) represents the
number of billing periods during T with

∑
dci∈Dc

rtkdci,dpj <

x. Thus, O′(x) increases. At first, when O′(x) < n ∗ (1−α),
then fI(x) > 0, which means fdpj (x) increases; when O′(x)
is larger than n∗(1−α), then fI(x) < 0, which means fdpj (x)
decreases. Therefore, fg

stj
(x) increases and then decreases.

Since fg
stj
(R′g

dpj
) reaches the largest f(x), we can derive that

fg
stj
(x) increases when x ∈ [0, R′g

dpj
), and decreases when

x ∈ (R′g
dpj
, An].

Based on Theorem 1, we can derive that when x ∈
[Ai, Ai+1], fdpj (x) increases or decreases monotonically. This
is because if Ai+1 ≤ R′g

dpj
, then for x ∈ [Ai, Ai+1],

fdpj (x) increases monotonically; otherwise fdpj (x) decreases
monotonically. For x ∈ [0, A1], we can transform Equation (1)
to fdpj (x) =

∑
tk∈T x ∗ (1−α) ∗ p

g
dpj

. Then, we can get that
for x ∈ [0, A1], fdpj (x) is positively proportional to x.


